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Abstract--For turbulent flows in ducts axial heat conduction effects within the fluid can be important for 
low Prandtl rLumber fluids (liquid metals). The paper presents an entirely analytical solution to the extended 
turbulent Graetz problem with Dirichlet wall boundary conditions. The solution is based on a selfadjoint 
formalism resulting from a decomposition of the convective diffusion equation for turbulent flow into a 
pair of first-order partial differential equations. The present approach, which is based on the solution 
method of Papoutsakis et al. for laminar pipe flow, is not plagued by any uncertainties arising from 
expansions in terms of eigenfunctions belonging to a nonselfadjoint operator. The obtained analytical 
results are compared with measurements of Gilliland et al. and Sleicher et al. showing good agreement 

between measured and predicted values. 

1. INTRODUCTION 

The relative importance of axial conduction in heat 
transfer to a fluid flowing inside a duct depends pri- 
marily on the magnitude of the Peclet number. For 
laminar flow through a circular pipe, for instance, 
axial heat conduction in the fluid can be neglected in 
comparison to radial conduction if the Peclet number 
exceeds approximately 100. The classical Graetz prob- 
lem deals with heat transfer in the developing thermal 
region under such conditions [1-3]. However, for 
flows with Peclet n~mbers smaller than 100, axial heat 
conduction in the fluid becomes increasingly impor- 
tant as PeD decreases. This is the case, for example, in 
compact heat exchangers where liquid metals are used 
as the working fluids. 

In the past many investigations have been carried 
out which deal witlq, the solution of the extended Gra- 
etz problem (the Graetz problem considering axial 
heat conduction in the fluid) for thermally developing 
laminar flow in a pipe or in a parallel plate channel. 
Extensive literature reviews on this subject are given 
in [4] and [5]. Malay of the solutions cited in [4, 5] 
for the extended Graetz problem are based on the 
fundamental assumption that the solution of the prob- 
lem has the same form of the series solution as the 
Graetz problem wil:hout axial heat conduction in the 
fluid. This approach results in a nonselfadjoint eig- 
envalue problem wilth eigenvalues that could, at least 
in principle, be complex and eigenvectors that could 
be incomplete. Several strategies have been developed 
in the past to overcome this problem. Hsu [6] con- 
structed the solution of the problem from two inde- 
pendent series solutions for x < 0 and x > 0. Both the 
temperature distribution and the temperature gradi- 

ent were then matched at x = 0 by constructing a pair 
of orthonormal functions from the nonorthogonal 
eigenfunctions by using the Gram-Schmidt-orthonor- 
malization procedure. Hence this method is clearly 
plagued with the uncertainties arising from expansion 
in terms of eigenfunctions and eigenvalues belonging 
to a nonselfadjoint operator. It was the merit of 
Papoutsakis et al. [7] to show that it is possible to 
produce an entirely analytical solution to the extended 
Graetz problem for Dirichlet boundary conditions. 
Their solution is based on a selfadjoint formalism 
resulting from a decomposition of the convective 
diffusion equation into a pair of first-order partial 
differential equations. The method was originated by 
Ramkrishna and Amundson [8]. Later a different 
approach for obtaining an analytical solution of the 
extended Graetz problem was presented by Ebadian 
and Zhang [9]. They used a Fourier transform of the 
temperature field and expanded the coefficients of the 
transformed temperature in terms of the Peclet 
number. This approach resulted in a set of ordinary 
differential equations which can be solved success- 
ively. 

Additionally several investigations have been car- 
ried out in the past concerning the extended Graetz 
problem in a parallel plate channel. Deavours [10] 
presented an analytical solution for the extended Gra- 
etz problem by decomposing the eigenvalue problem 
for the parallel plate channel into a system of ordinary 
differential equations for which he proved the ortho- 
gonality of the eigenfunctions. Weigand et al. [11] 
studied liquid solidification in a parallel plate channel 
subjected to laminar internal flow. They applied a 
regular perturbation expansion to the energy equa- 
tion. The zero order problem was formally identical 
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NOMENCLATURE 

a thermal diffusivity 
al, a2 functions defined by equations (11) 

and (12) 
Aj constants 
c v specific heat at constant pressure 
D hydraulic diameter, 4h (planar 

channel), 2R (circular pipe) 
f, F vectors 
AF relative error, 

(Nb/elliptic - -  Nb!parabolic)/Nblelliptic 
h distance between the centerline and the 

wall (planar duct) 
k flow index, 0 for a planar channel, 1 

for a circular pipe 
k thermal conductivity 
l mixing length 
L characteristic length, L = h (planar 

duct), L = R (circular pipe) 
L matrix operator, equation (15) 
n coordinate 
NuD Nusselt number based on the hydraulic 

diameter, equation (41) 
Nu~ Nusselt number for fully-developed 

flow, equation (47) 
P .pressure 
Pr Prandtl number 
PeL Peclet number based on the 

characteristic length L 
Pep Peclet number based on the hydraulic 

diameter 

Prt turbulent Prandtl number 
r radial coordinate 
R pipe radius 
ReL Reynolds number based on the 

characteristic length L 
Reo Reynolds number based on the 

hydraulic diameter 
T temperature 
To uniform temperature for x ~ oe 
T~ uniform temperature for x ~ -- oc 
Tb bulk temperature, equation (42) 
u axial velocity 
ao axial mean velocity 
u~ friction velocity, 4(Zn×)w/p 
x axial coordinate 
y+ wall coordinate, u~(L--n)/v. 

Greek symbols 

~hx 

~hn 

Em 

P 
~j 
0 
0, 

I~nxlw 
V 

E 
,I,j 

eddy diffusivity in axial direction 
eddy diffusivity in normal direction 
eddy kinematic viscosity 
density 
eigenvalue 
dimensionless temperature 
dimensionless bulk temperature 
wall shear stress 
kinematic viscosity 
axial energy flow, equation (13) 
eigenfunction. 

with the extended Graetz problem in a parallel plate 
channel. For the solution of the zero order problem 
they followed the method of Papoutsakis et al. [7] 
and obtained an analytical solution. There are many 
numerical investigations which deal with the extended 
Graetz problem for laminar flow in a pipe or a parallel 
plate channel, for example [12, 13]. For more detailed 
information concerning numerical investigations the 
reader is referred to [4, 5]. 

Although axial heat conduction can be ignored for 
turbulent convection in ordinary fluids and gases, with 
liquid metals this might not always be justified. In fact 
because of the very low Prandtl numbers for liquid 
metals (0.001 < Pr < 0.06) the Peclet number can be 
as small as three in turbulent duct flows. A literature 
review about the convective heat transfer in liquid 
metals can be found in [5]. Lee [14] studied the 
extended Graetz problem in turbulent pipe flow. He 
found that for Peclet numbers below 100, axial heat 
conduction in the fluid becomes important in the ther- 
mal entrance region. He investigated a pipe which was 
insulated for x < 0 and had a uniform wall tem- 
perature for x > 0. Lee used the method of Hsu [6] to 
obtain a series solution for the problem. In [14] the 

variation of the Nusselt number for fully-developed 
flow was shown for several Peclet and Prandtl 
numbers. In addition the error in Nusselt number 
resulting from neglecting the axial heat conduction 
effect was presented. This error was found to be as 
much as 40% for a Peclet number of 5. A shortcoming 
of [14] is that no eigenvalues or constants were pre- 
sented for various Peclet and Prandtl numbers. Also, 
no variations of the Nusselt number in the thermal 
entrance region were shown. 

No investigation is known in the literature which 
deals with the effect of axial heat conduction in a 
turbulent flowing liquid inside a pipe with Dirichlet 
boundary conditions (wall temperature of the pipe 
specified for x < 0 and x > 0 with a step in the wall 
temperature for x = 0). For the case of turbulent flow 
inside a parallel plate channel, the effect of axial heat 
conduction within the fluid was only studied by Fag- 
giani and Gori [22]. They solved numerically the 
energy equation for a constant heat flux boundary 
condition. No investigation is known in literature 
which deals with the effect of axial heat conduction in 
a parallel plate channel for the case of prescribed wall 
temperature boundary conditions. Additionally, there 
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is no analytical inve,;tigation known which studies the 
effect of axial heat conduction within a parallel plate 
channel for turbulent flow. 

Therefore, the purpose of the present paper is to 
derive an exact analytical solution for the extended 
Graetz problem with Dirichlet wall boundary con- 
ditions for turbulent flows with low Peclet numbers 
inside a parallel plate channel as well as a circular pipe. 
By using a solution method similar to Papoutsakis et  
al. [7] it is possible to derive, with the help of a newly 
defined vector n o ~ ,  analytical solutions for the 
extended Graetz problem which are computationally 
as simple and efficient as the solution of the parabolic 
problem. In addition, the solution presented here is 
not plagued with any uncertainties arising from 
expansions in terms of eigenfunctions belonging to a 
nonselfadjoint operator. 

2. ANALYSIS 

Figure 1 shows the geometrical configuration and 
the coordinate system. The characteristic length L 
denotes half of the c, hannel height h for the flow in a 
parallel plate channel or the radius R for the flow in 
a circular pipe. It is assumed that the flow enters the 
duct with a fully-developed turbulent velocity profile 
and with a uniform temperature profile To for x--.  

- ~ .  For x ~ + ~ the flow will attain the uniform 
temperature. TF. The wall temperature is maintained 
at To for x ~< 0 and at Tv for x > 0. Under the assump- 
tions of an incompressible flow with constant physical 
properties, negligible viscous and turbulent energy dis- 
sipation and hydrodynamically fully-developed flow, 
the energy equation is given by 

OT ~ [- OT-] 

1 a ? _ k + p c ~ n . ) ~  n (1) 

with the boundary conditions 

n = L: T = To, x <~ O and T = TF, X > O 

n = 0: OT/On = 0, lim T = To, lim T = Tr. 
x ~ - o o  x ~ + ~  

(2) 

The index k which appears in equation (1) is equal to 
0 for a planar duct and equal to 1 for a circular pipe. 
The velocity distribution u which appears in equation 
(1) has been calculated from the momentum equation 
for hydrodynamically fully-developed flow 

[ T°/ I n T~/ I I  . . . . . . . . . . . . . . . . . . . . . . .  i" " ~" . . . . . . . . . . . . . . . . . .  L 

 ilil. ;..i ......... 
Fig. 1. Geometrical configuration and coordinate system. 

dP 1 d [rk(#+,~m)dn u] 
Ox - ? dn (3) 

with the boundary conditions 

du 
n =0:~nn = 0  n = L : u = O .  (4) 

Additionally the conservation of mass in integral form 

t~0L2k+ 1 1 j'L = ur k dn (5) 
k + l  0 

has to be satisfied. This equation determines the 
unknown pressure drop in the duct. The eddy viscosity 
em in equation (3) is modelled by using the well-known 
Nikuradse mixing length formula with the van Driest 
damping factor 

~'m = l z du (6) 

with I given by 

[ (% I =  L 0.14--0.08 

n 4 

By introducing the following dimensionless quantities 

T - T F  x 1 u 
0 £ -  ~ = - -  

To -- TF L Pem fro 

n r 
= ~ 7 =  ~ PeL = ReL Pr, 

aoL v 
ReL = Pr  = -  

v a 

~m ~m 
gm = - -  Prt = - -  (8) 

V ~hn 

into equations (1) and (2) the energy equation can be 
cast into the following nondimensional form 

~0 1 ~2 [ 00]  1 ~ F 00]  
~ . x  - Pe~ al ~ + ~ ~Lr% ~j ( 9 )  

with the boundary conditions 

= 1 : 0 =  1,x~<0 and 0 = 0 , x > 0 ;  

= 0 : O 0 / 0 ~ = 0  lim 0 = 1  lim 0 = 0 .  

The functions al(~) and a2(n ~) are given by 

al (ti) = I + - - g m  - -  
Prt keh , )  

(10) 

(11) 

P r  

a2(~) = 1 + ~ e m .  1-% 
(12) 
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In the following solution process for equation (9) no 
assumptions are required about the functions a~(r~) 
and a2(~). The solution presented here holds for arbi- 
trary functions a,(~) and a2(~) as long as al >/1, a: ~> 1 
which is obviously true from the structure of equations 
(11) and (12). Therefore, the turbulent Prandtl num- 
ber as well as the ratio ehx/ehn which were used in the 
equations (11) and (12) will be specified later. 

Papoutsakis et al. [7] showed that it is possible to 
solve equation (9) for laminar pipe flow (am = a2 = 1) 
by decomposing the elliptic partial differential equa- 
tion into a pair of first order partial differential equa- 
tions. The ensuing procedure for solving the extended 
turbulent Graetz problem given by equations (9) and 
(10) follows the method of Papoutsakis et al. [7] for 
deriving the solution of the more general problem 
where al and a2 are functions of r~. 

Let us define a function Z(Y, fi) which may be called 
the axial energy flow through a cross-sectional area of 
the height ~ by 

Y = f ] [  aO-  l~Pe~ al (a)~.]fk d~. (13) 

Introducing E, defined by equation (13), into the 
energy equation (9) results in the following system of 
partial differential equations 

~F(£,~)  = LF(g,~) (14) 

with the two component vector F and the operator L 
given by 

LX(X,,~)J 

Pe~a 
al Oq) 

L =  
J"l 

?kal(~) . (15) 

0 

The boundary conditions belonging to Y,(g, rT) can be 
derived from equation (10) and equation (13) 

lim X--- da l i m E = 0  f i = 0 : E = 0 .  
~ - - ~  J 0  ~ o o  

(16) 

Before calculating the solution of equation (9), 
some interesting details about the operator L and the 
corresponding eigenvalue problem for equation (14) 
should be presented. The most remarkable aspect of 
L is that it gives rise to a selfadjoint problem even 
though the original convective diffusion operator is 
nonselfadjoint. This fact is of course dependent on the 
sort of inner product between two vectors which will 
be used. If  we define an inner product between two 
vectors 

~ = [ ~ ' ( n ) l  A (17) 
Lm~ (~)J LA~ (~)J 

a s  

('1 I-a1 (fi)~ 
<.,A> = J0 *' (a)A'(a) 

+ az(lr~)r~*/(a)A2(r~)]d~ (18) 

and the following domain for L 

D (L) = {~ ~ H: Lt} (exists and) e H, tI) l (1) 

= ~2(0) = 0} (19) 

then it can be shown that L is a symmetric operator 
in the Hilbert space H of interest (this means that 
<~,LA> = <L~,A>). The general expression for the 
inner product given by equation (18) was developed 
by the author. This expression reduces for laminar 
pipe flow (k = 1, a~ = a21 = 1) to the inner product 
given by Papoutsakis et al. [7] and for k =  0, 
al = a2 = 1 to the inner product given by Weigand et 
al. [11] for laminar flow and heat transfer in a parallel 
plate channel. Thus the selfadjoint eigenvalue prob- 
lem associated with equation (14) is given by 

L~I~j = ~.jtI~j (20) 

where ~j denotes the eigenvector corresponding with 
the eigenvalue 2j. Using the definition of the matrix 
operator L given by equation (15), the eigenvalue 
problem, equation (20), can be rewritten in the form 

2 P e L [ a ~  {~jl ~all (/~) (I)~2] = ,~j(i)jl (21) 

Ua2 (~)~1 = 2j~j2. (22) 

If  ~jz is eliminated from equation (22), the following 
eigenvalue problem for ~jl can be obtained 

[Fkaz(r~)~jl]'+~F 2jal(r~)[_ Pe 2 --ff]2jt}j, = 0. (23) 

Equation (23) has to be solved in conjunction with 
the boundary conditions 

ep~,(0) = 0 ~jl(1) = 0. (24) 

Additionally an arbitrary normalizing condition 

%(0)  = 1 (25) 

has been used for the eigenvectors. Equation (23) 
possesses both positive eigenvalues 2 + with the cor- 
responding eigenvectors ~+ and negative eigenvalues 
)~f with eigenvectors ~j-. This is because the operator 
L is neither positive nor negative definite. All 2j are real 
because they are in fact the eigenvalues of a selfadjoint 
problem. For al (~ /Pe  2 ~ 0 the eigenvalue problem 
given by equation (23) reduces to the parabolic Graetz 
problem in turbulent flow. For am = a2 = 1 and a lami- 
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nar velocity profile for ~ the eigenvalue problem 
reduces to the extended Graetz problem for laminar 
flow. 

Because the two sets of eigenvectors, normalized 
according to equafior~ (25), constitute an orthonormal 
basis in H (see Appendix 1) an arbitrary vector f 
can be expanded in terms of eigenfunctions in the 
following way 

f = ~ <~,~j>/II ~ j  II2'~(~) 
j = l  

with the vector norm 11~112= <~,~>. If  we 
explicitly distinguish in equation (26) between positive 
and negative eigenw,'ctors, equation (26) takes the 
following form 

f = ~ <f'OJ+ > • + (rl) + ~ l  <f'~)- > ~j- (if). 
J=~ I 1 ~  + II 2 I I ~ j - I I  2 

(27) 

Now let us reconsider the solution of equation (14). 
The solution of the problem F(~, ~) will be obtained 
in the form of the series given in equation (27). There- 
fore, the inner product appearing in the expansion 
coefficients of equation (27) must be determined. 
Using equation (18), it can be seen that 

(LF,tI)j) = (F ,L*j )  +*j2(1)g(X). (28) 

The function g(~) is given by 

1, X ~< 0 (29) 
g ( x ) =  O, x > O .  

Taking the inner product of both sides of equation 
(14) with ~j and using equation (28) one obtains with 
the help of equation (20) 

0 
~<r , l l l j )  = 4(F,tlIj) +g(.~)(t)j2(1). 

Equation (30) can be solved separately for positive 
and negative eigenvalues. This results in 

( F , ~ - )  = C~ exp(2~- X) 

+ f ~ (g(~)~)j~ (1)) exp (2 7 (X-~?)) d~? 
J-  ¢4) 

( F , ~  + ) = C~ exp (2/-)?) 

t ~ (9(.~)¢~ (1)) exp (4 + (~-- 2)) d~z. 
3~ 

Because the solution must be bounded for Y--* + oo 
and for 2 - - * -  0% the two constants C~ and C~-, 
appearing in the equations (31) and (32) must be zero. 
After carrying out the integrations in equations (31) 
and (32) the following results for 0(~, n3, which is the 
first vector component of F(£, n), can be derived 

x .< o: o(~,,~) = - x} ~ j ~ ( 1 ) %  !~) 
j--'~l ~l,j II ~j-II 2 

ej~ (1)%- (,~) 
+ 

V II ®j+ II 2 

q~ ( 1 ) ~  (rT) "°+ " (33) 

(26) 

J='  4 I I~J - II = 

(34) 

From equations (33) and (34) it can be observed that 
the solution for 97 ~< 0 contains both negative and posi- 
tive eigenfunctions. By expanding the vector (1,0) T 
into a set of orthonormal eigenfunctions according to 
equation (27) it can be shown that the first sum on 
the right-hand side of equation (33) is equal to 1. This 
leads to the following expression for the temperature 
distribution for .~ ~< 0 

~j~ (_l)~j] @) + ~+ r~ 
~_<  o: o(~,,~) = 1 +  )2 " ~ ' "  J = '  ~j+ l[ I~j + [[ 2 exp t j x).  

(35) 

It should be noted that the continuity of 0(~, g) at 
)? = 0 is established immediately from the equations 
(33) and (34) and the boundary conditions for 0, 
equation (10), are obviously satisfied by equations 
(34) and (35). It can be shown from equation (23) 
that for al QI)/Pe~ ~ 0 all 2~ tend to infinity. There- 
fore, the solution for :~ ~< 0 tends to 

0(g,a) = 1 for a~ (~) /Pe[  ~ 0 (36) 

which represents the solution of the limiting case 
which is the parabolic problem. The vector norm 
II ~j I1:, appearing in the solution, can be simplified by 

(30) using the equations (21) and (22). It can be shown 
that the norm, given by equation (18), continuously 
approaches the norm for the parabolic problem if 
a~ Qq)/Pe 2 --* O. Further it can be shown that 

. . . .  d(I)j (1) 
II (I)j ii: = uJj2ti)- ~ -  . (37) 

(31) 
The reader is referred to Appendix 2 for more details 
concerning the vector norm. Introducing equation 
(37) into equations (34) and (35) results in the fol- 
lowing equations describing the temperature dis- 

(32) tribution in the fluid 

Y ~ 0: 0(~,~) = 1 + ~ A+q~ (~) exp (2+~) (38) 
j--1 

> 0:0(ffn~) = ~ ASq~jT(~ exp (2j~) (39) 
j = l  

where the coefficients Aj are given by 



1630 B. WEIGAND 

Aj = (2j d~j(1)/d2 k ) - I .  (40) 

For the designers of heat exchangers it is of great 
interest to know the axial variation of the Nusselt 
number. The Nusselt number, based on the hydraulic 
diameter of the duct, is defined by 

The bulk temperature Tb appearing in equation (41) 
is given by 

/;o' Tb = uTJ'  dn ut a dn. (42) 

Introducing the dimensionless quantities given by 
equation (8) into the equations (41) and (42) and 
using the temperature distribution given by equations 
(38) and (39) results in the following expressions 

different. A good literature review concerning the 
different models for the turbulent Prandtl number can 
be found in [15]. For the results presented here the 
model of Azer and Chao [16] was used because this 
model was able to predict relatively well the exper- 
imental results for the Nusselt number measured by 
Gilliland et al. [17] (taken from Reed [5]) and by 
Sleicher et al. [18]. The model for Pr t derived by Azer 
and Chao [16] considers a simplified mechanism of 
turbulent heat transfer based on the mixing length 
hypothesis. It was assumed that there is a continuous 
change of momentum and energy during the flight of 
an eddy. Although their complete formulae for Pr, are 
rather complicated, Azer and Chao [16] gave a simple 
approximation for the turbulent Prandtl number: 

1 + 3 8 0 / P @  58 exp [ -  (1 - n )  ° 25] 
Pr~ = 

1 + 135/Re~; 45 exp [ -  (1 - tO °25] (48) 

Additionally the assumption was made that the 

+ 2kill - -  a~ j (t~)qb~ (t~)? k dr~ exp (2j+X) ~<0:0b= 1 .= AJ+( 2 + +Pe~ 

-~ ~ 0: NUD ~- 

--4 ~ A+*'~  (1) exp (2+X) 
j=l 

f' } 4 k ~ A + ~ * ' 3 ( 1 ) +  - a,(rT)O)~(n)fid~ exp(~j+£) 
j = 1 ( /~j+ Pe~ Jo 

k -- _ ( 0  jl (1) + _ _  al (~)Oi7 (a)?* d~ exp (~j--.~)  >o:o =2_ZAj l ee2 

> 0: Nun  -- 

- 4 ~  A70;I (1)exp(2j-~) 
j=l 

4 k * A-  * ; l (1)  f o ~ a , ( ~ ) , ~ ( ~ ) r  k j~l j { 2j- +2fee~ dt~} exp(27x) 

(43) 

(44) 

(45) 

(46) 

The Nusselt number for fully-developed flow can be 
derived from equation (46) by considering the limiting 
case ~ ~ 

Nuco 
41271 

),?2 

(47) 

3. RESULTS AND DISCUSSION 

In order to obtain solutions of the energy equation 
(9), the turbulent Prandtl number and the ratio 
(ehx/ehn) appearing in the equations (11) and (12) have 
to be specified. There is a variety of different models 
in the literature prescribing the turbulent Prandtl 
number. Especially in the case of liquid metal flows 
the values for Pr t given by several models are quite 

ratio of the axial diffusivity to the radial diffusivity 
ehx/eh, appearing in equation (11) is equal to one. This 
assumption has been made previously by Lee [14] and 
by Chieng and Launder [19]. Nevertheless, it should 
be noted that the analysis presented in the previous 
section is more general and can be used with any 
turbulent Prandtl number concept and with arbitrary 
functions for al(t0 and a2(g). 

3.1. Numerical  procedure and accuracy o f  the pre- 
dictions 

The eigenvalues 2j as well as the eigenfunctions @j(ri) 
were calculated numerically for the eigenvalue prob- 
lem given by equation (23) by using a four-stage 
Runge-Kutta scheme. In order to examine the accu- 
racy of the calculated values several calculations were 
carried out for laminar flows. The results for laminar 
pipe flow could be compared with the values given in 
Papoutsakis et al. [7] for different values of the Peclet 
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Table 1. Eigenvalues and constants for various Reynolds numbers and Pr = 0.002 (circular 
pipe) 

1631 

Pr = 0.002 
ReD n -- 2; ~ A j- 2~ A~ 

5000 1 4.1681E+00 1.3933E+00 3.4372E+01 - 2 . 0 4 2 7 E -  01 
2 1.6635E÷01 -7 .3175E-01  45841E+01 3.2643E--01 
3 3.1228E+01 5.2163E-01 6.0004E÷01 -3 .2597E-01  
4 4.6408E+01 -4 .2075E-01  7.4956E+01 3.0601E-01 
5 6.1812E+01 3.6089E-01 9.0219E+01 -2 .8529E-01  
6 7.7325E+01 -3 .2067E-01  1.0564E+02 2.6687E-01 
7 9.2895E+01 2.9153E-01 1.2114E÷02 -2 .5097E-01  
8 1.0850E+02 -2 .6922E-01 1.3670E+02 2.3729E-01 
9 1.2413E+02 2.5135E-01 1.5229E+02 -2 .2544E-01  

10 1.3978E+02 -2 .3669E-01  1.6790E+02 2.1509E-01 

10000 1 4.7206E÷00 1.5069E÷00 1.1908E+02 - 7.0578E-02 
2 2.2434E+01 -8.5318E--01 1.3678E+02 1.7954E-01 
3 4.7050E+01 6.0532E-01 1.5972E+02 -2 .3428E-01  
4 7.4691E÷01 -4 .7805E-01  1.8658E+02 2.4440E-01 
5 1.0377E÷02 4.0173E-01 2.1519E+02 --2.4155E-01 
6 1.3362E÷02 - 3.5094E-01 2.4472E+02 2.3439E--01 
7 1.6392E+02 3.1470E-01 2.7478E+02 -2 .2599E-01  
8 1.9450E+02 -2 .8747E-01  3.0518E+02 2.1752E-01 
9 2.2527E÷02 2.6603E-01 3.3580E+02 - 2.0942E-01 

10 2.5617E+02 -2 .4871E-01  3.6659E+02 2.0185E-01 

15000 1 4.8975E+00 1.5388E÷00 2.5138E+02 - 1.9053E-02 
2 2.4799E÷01 -9 .1289E-01  2.8039E+02 8.9513E-02 
3 5.5335E+01 6.6181E-01 3.0700E+02 - 1.6288E-01 
4 9.2024E+01 - 5.2373E-01 3.4161E+02 1.9182E-01 
5 1.3221E+02 4.3764E-01 3.8068E+02 -2 .0131E-01  
6 1.7448E+02 -3 .7939E-01  4.2220E+02 2.0291E-01 
7 2.1804E+02 3.3754E-01 4.6524E+02 -2 .0084E-01  
8 2.6245E+02 -3 .0603E-01  5.0925E+02 1.9703E-01 
9 3.0745E+02 2.8143E-01 5.5394E+02 - 1.9245E-01 

10 3.5286E+02 --2.6166E--01 5.9910E+02 1.8758E-01 

number .  The eigenvalues calculated here agree for the 
case of  l aminar  pipe flow (al = a2 = 1, t7 = 2(1-r~2)) 
within a relative error  of  I A2j I/I ;~jl < 10-7 while the 
calculated cons t an t s / l j  were found to be in agreement  
with  the values given by Papoutsakis  et al. [7] within 
a relative error  of  l A,tj I/I Aj I < 10-6. In addit ion,  the 
calculated values for eigenvalues are in very good 
agreement  with those of  Deavours  [10] for laminar  
flow in a parallel  plal:e channel .  

3.2. Heat  transfer re, cults f o r  the circular pipe 
If  the flow and  heat  t ransfer  in a circular pipe is 

considered,  the flow index k in the preceeding equa- 
t ions mus t  be set to 1. Table  1 shows calculated eig- 
envalues 2j as well as the cons tants  Aj for different 
values of  the Reynolds  n u m b e r  and  Pr = 0.002. The 
table conta ins  values for ~ > 0(27,  AT) as well as the 
values for  ~ < 00. j+,A~).  F r o m  the table it can be 
seen tha t  the positive eigenvalues increase dra-  
matically with  increasing Peclet numbers ,  indicat ing 
the vanishing influence of  axial heat  conduc t ion  for 

< 0. According to Reed [5] only the exper imental  
da ta  of  Sleicher et a:l. [18] and  Gil l i land et al. [17] 
( taken f rom Azer  and  Chao  [16]) are judged to be 
reliable for the case of  un i form wall t empera ture  for 

the flow of  liquid metals. Therefore,  Fig. 2 shows a 
compar i son  between the au thor ' s  predicted Nussel t  
numbers  for fully-developed pipe flow and  exper- 
imental  da ta  f rom [17] and  [18]. I t  can be seen tha t  
the predicted Nussel t  numbers  for fully-developed 
flow are a little bi t  too low for higher  values of  the 
Peclet number ,  indicat ing tha t  the tu rbulen t  Prandt l  
n u m b e r  model  of  Azer and  Chao  [16] underpredic ts  
the values for the thermal  mixing length for higher  
Peclet numbers .  Nevertheless,  for the range of  Peclet 
numbers  of  interest  (PeD < 1000) the model  predicts 

Nuoo loo:: 

t 
~. Experiment [181 
Q Experiment [17] 

- -  Correlat ion [5] 

P r  : 0.022 

100 1000 10000 

Pe o 

Fig. 2. Nusselt number for fully-developed pipe flow as a 
function of the Peclet number. 
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Fig. 3. Variation of the local Nusselt number in the thermal 
entry region of a circular pipe. 

values for the Nusselt numbers which are in very good 
agreement with the measurements. In Fig. 2 the rec- 
ommended Nusselt number relation of Reed [5] for 
constant wall temperature 

NuD = 3.3 + 0.02Pe~/8 (49) 

was also plotted. It can be seen that equation (49) 
represents a good fit to the data of Sleicher et al. [18] 
and Gilliland et al. [17]. Figure 3 shows a comparison 
between calculated values of the local Nusselt number, 
scaled by the Nusselt number for fully-developed flow, 
and experimental data from Awad [20]. It can be seen 
that the prediction compares well with the exper- 
imental results for both shown Reynolds numbers. 

The preceeding calculations were carried out for a 
range of Peclet numbers where axial heat conduction 
in the fluid can be neglected with good accuracy. Let us 
now focus on low Peclet number flows. Unfortunately, 

there are no experimental data available by now for 
PeD < 100, but from the good agreement shown 
between calculations and measurements it can be 
expected that the turbulent Prandtl number model 
used will still give accurate results for Peclet numbers 
smaller than 100. Table 2 shows values for the Nusselt 
number for fully-developed flow for different Reyn- 
olds and Prandtl numbers. The values in brackets 
given in Table 2 indicate the Nusselt numbers for 
fully-developed flow for the case of al (~)/Pe~ --, 0 (no 
axial heat conduction, parabolic problem). As it was 
noted before by Lee [14], it can be seen that the effect 
of axial heat conduction is negligible for thermally 
fully-developed flow. It was shown by Papoutsakis et 
al. [7] that the Nusselt number for fully-developed 
flow does not depend on the upstream wall boundary 
conditions (ff < 0). This fact makes it possible to com- 
pare the here predicted Nusselt numbers for thermally 
fully-developedflow with the Nusselt numbers given 
by Lee [14] although the boundary conditions for 
97 < 0 are competely different. It was found that the 
values for the Nusselt number for the thermally fully- 
developed flow agree within a relative error of less 
than 1.5% with the values given by Lee [14]. 

One other interesting fact can be recognized from 
Table 2. For very low values of the Reynolds number 
(ReD = 3000, Rei~ = 5000) the value of the Nusselt 
number for fully-developed flow first decreases with 
increasing values of the Prandtl number and sub- 
sequently increases with increasing Pr. This is due to 
the fact that for this low values of ReD the functions 
a, = a2 -~ 1 for very low values of Pr. Therefore, the 
fully-developed Nusselt number starts to behave as 
for laminar flow showing the typical increase of Nu~ 
with decreasing values of the Peclet numbers [4]. With 
increasing Prandtl numbers the functions al and a2 
start to deviate from unity, which means that the eddy 
diffusivity reaches higher values and therefore the 
Nusselt number for fully-developed flow starts to 
increase. 

Figure 4 shows the effect of axial heat conduction 
in the flow on the distribution of the local Nusselt 
number for two different Peclet numbers. The Nusselt 
numbers are plotted as a function of the modified 
axial coordinate x/(DPeD). For Pep = 10 it can be 
seen that a pronounced difference exists between the 

Table 2. Nusselt numbers for fully developed flow in a circular pipe (£ ~ oo) as a function of the 
Reynolds and Prandtl number. The values in brackets indicate the Nusselt numbers for fully 

developed flow without axial heat conduction effects 

Pr  
ReD 0.002 0.004 0.006 0.01 0.02 

3000 4.635(4.576) 4.601(4.580) 4.595(4.585) 4.601(4.597) 4.643(4.642) 
5000 4.763(4.737) 4.752(4.745) 4.758(4.755) 4.782(4.781) 4.872(4.872) 
8000 4.871(4.859) 4.877(4.874) 4.895(4.893) 4.944(4.943) 5.113(5.113) 

10000 4.917(4.910) 4.931(4.929) 4.956(4.955) 5.022(5.022) 5.247(5.247) 
15000 4.993(4.989) 5.024(5.022) 5.067(5.067) 5.178(5.178) 5.548(5.548) 
20000 5.042(5.040) 5.089(5.088) 5.152(5.152) 5.310(5.310) 5.832(5.832) 
30000 5.109(5.108) 5.189(5.189) 5.293(5.293) 5.553(5.553) 6.384(6.384) 



Analytical solution for the extended turbulent Graetz problem 1633 

Nu 40 

l 30 

20- 

10. 

0 

NU t,O • 

  Z . 7 1 Z L o  

0.02 0.04 0.06 

Re o = 5000 

Pr =0.002 

0,08 0.1 

x I 
D Pe D 

30' 

20 

10 

0 

j with tlxicl heat conduction 

j without ¢¢xiol heat conduction 

0.02 0.04 0.06 

Reo= 10000 

Pr = 0.002 

0.08 0,1 

X 1 
O Pe 0 

Fig. 4. Effect of axial heat conduction on the shape of the 
local Nusselt number. 

Nusselt number for the case with axial heat con- 
duction and the parabolic calculation (no axial heat 
conduction). It can be observed that the Nusselt num- 
ber for the case with axial heat conduction is higher 
than the related Nusselt number for the parabolic 
problem. This is in accordance with the results of 
Hennecke [12] for laminar pipe flow. Furthermore 
the figure shows that the thermal entrance length is 
enlarged by considering axial heat conduction within 
the fluid. For Pet, = 20 it can be seen that the effect 
of axial heat conduction is less important for the shape 
of the Nusselt nuraber. Additionally the thermal 
entrance length is for PeD = 20 very similar for the 
two cases with and without axial heat conduction. It 
should be pointed out here that because of the slow 
convergence of the series for the Nusselt number, 
equation (46), a lot of eigenvalues have to be taken to 
guarantee sufficiently accurate results for the case of 
Dirichlet boundary conditions. For x/(DPeD) > 10 -3 
and Peclet numbers bigger than 10 for example about 
100 eigenvalues and. eigenfunctions are required to 
guarantee accurate results. 

Figure 5 shows th,~ relative error AF in the Nusselt 
number due to ignoring axial heat conduction effects 
within the fluid. As expected, the relative error 
increases with decreasing values of the Peclet number 
and decreasing values of the axial coordinate. Never- 
theless, the shape of the curves as well as the mag- 
nitude of the relative error are quite different to those 
predicted by Lee [1.4]. For PeD = 10, Lee [14] pre- 
dicted a maximum e, rror of about 32% occurring at 
x/(DPeD) ,~ 0.002. For lower values of the axial coor- 

AF o.B- 

I Pr= 0.002 
0.6 - Pet)= 10 

Pea=20 
PeD=40 

0.4 " = ~  

0.2" 

0 
0.001 0.01 0.1 

X 1 
O Pe 0 

Fig. 5. Relative error in the local Nusselt number due to 
ignoring the axial heat conduction with the fluid (circular 

pipe). 

dinate the relative error was decreasing. In the present 
study it was found that the relative error was gradually 
increasing for decreasing values of the axial coor- 
dinate. This different behaviour is due to the differrent 
boundary conditions used in the present study. Lee 
[14] used for his study an adiabatic entry length for 

< 0 and a constant wall temperature for ~ > 0, 
whereas in the present study Dirichlet boundary con- 
ditions were used. It can be stated that the effect of 
axial heat conduction on the Nusselt number will be 
more pronounced for Dirichlet boundary conditions 
than for the insulated upstream region investigated by 
Lee [14]. Additionally it has to be noted that Lee [14] 
used only 20 eigenvalues and eigenfunctions for his 
calculations. Because he applied no Dirichlet bound- 
ary conditions, the number of terms might be enough 
for most of his calculations. Nevertheless, it is ques- 
tionable if the shape of the relative error for very low 
Peclet numbers (Pep = 5) and very small values of the 
axial coordinate could be calculated with sufficient 
accuracy by him. The following Fig. 6 shows the tem- 
perature distribution within the fluid for several axial 
locations. For ~ > 0 the well-known shape of the tem- 
perature profile can be observed. The fluid con- 
tinuously loses heat and the temperature of the flow 
aproaches the wall temperature for ~ ~ oe. Addition- 
ally Fig. 6 shows several temperature distributions for 
negative axial coordinates which elucidate the effect 
of axial heat conduction. The region of influence of 
axial heat conduction for the two different values of 
the Peclet numbers can be clearly seen from Fig. 6. 

3.3. Heat transfer results for the parallel plate channel 
For flow and heat transfer in a parallel plate chan- 

nel, the flow index k in the preceeding equations must 
be set to 0. Table 3 shows calculated eigenvalues 2j as 
well as the constants Aj for different values of the 
Reynolds number and Pr = 0.001. Table 4 shows 
values of the Nusselt number for fully developed flow 
in a parallel plate channel for various values of the 
Reynolds and Prandtl number. Similar to Table 2, the 
values in brackets indicate the Nusselt numbers for 
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Fig. 6. Development of the temperature distribution in the 
thermal entry region of a circular pipe. 
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Fig. 8. Influence of the Prandtl number on the shape of the 
local Nusselt number in a parallel plate channel. 

the case of neglected axial heat conduction (parabolic 
problem). 

Figure 7 shows the distribution of the local Nusselt 
number in the thermal entrance region of a parallel 
plate channel for air (Pr = 0.71). In addition, the fig- 
ure contains calculated local Nusselt numbers from 
Ozisik et al. [21] which are in good agreement with 
existing correlations. From Fig. 7 it can be seen that 
the present calculations are in very good agreement 
with the results of [21], which might be seen as another 
check of the validity of the present calculations. For 
the predictions shown in Fig. 7 the turbulent Prandtl 
number concept of Kays and Crawford [23] was used 
because equation (48) is only valid for liquid metals. 

Figure 8 displays the effect of axial heat conduction 
within the fluid on the distribution of the local Nusselt 
number for a given value of the Reynolds number. It 
can be seen that decreasing values of the Prandtl num- 
ber result in an increasing value of the Nusselt number 
in the thermal entrance region. Additionally it can be 
observed that the length of the thermal entrance 
region is enlarged by decreasing the Peclet number. 
This shows very clearly the effect of axial heat con- 
duction within the fluid on the shape of the Nusselt 
number for Dirichlet wall boundary conditions. Fig- 
ure 9 displays the relative error in the Nusselt number 
due to ignoring axial heat conduction effects within 
the fluid. The shape of the curves are quite similar to 
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Reo= 50000 
Reo= 10000 
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Fig. 7. Local Nusselt number in the thermal entry region of 
a parallel plate channel for Pr = 0.72. 
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Fig. 9. Relative error in the local Nusselt number due to 
ignoring the axial heat conduction within the fluid (parallel 

plate channel). 
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Table 3. Eigenvalues and constants for various Reynolds numbers and Pr = 0.001 (parallel 
plate channel) 

1635 

Pr = 0.001 
ReD n -- 2~ A j- 2~- A + 

10000 1 1.7507E+00 1.0431E+00 8.7937E+00 --2.3077E--01 
2 8.9611E+00 -- 2.5446E--01 1.5488E+01 1.7069E--01 
3 1.6690E+01 1.4051E--01 2.3103E+01 -- 1.1420E--01 
4 2.4496E+01 -9 .6905E-02  3.0853E+01 8.4945E-02 
5 3.2325E+01 7.4002E-02 3.8648E+01 -6 .7412E-02  
6 4.0164E+01 -5 .9896E-02  4.6464E+01 5.5798E-02 
7 4.8008E+01 5.0331E-02 5.4292E+01 -4 .7562E-02  
8 5.5854E+01 --4.3417E--02 6.2127E+01 4.1425E-02 
9 6.3702E+01 3.8182E--02 6.9967E+01 -3 .6680E-02  

10 7.1551E+01 - 3.4080E- 02 7.7810E+01 3.2905E-02 

15000 1 1.9645E+00 1.1253E+00 1.7605E+01 -- 1.4890E--01 
2 1.1812E+01 -2 .7523E-01  2.6446E+01 1.5031E--01 
3 2.3116E+01 1.4822E-01 3.7538E+01 - 1.0654E--01 
4 3.4698E+01 - 1.0070E-01 4.9014E+01 8.1150E--02 
5 4.6372E+01 7.6178E-02 6.0623E+01 - 6.5222E--02 
6 5.8087E+01 -6 .1270E-02  7.2293E+01 5.4407E--02 
7 6.9823E+01 5.1259E-02 8.3996E+01 -4.6617E--02 
8 8.1572E+01 -4 .4075E-02  9.5721E+01 4.0750E--02 
9 9.3328E+01 3.8667E-02 1.0746E+02 -3 .6180E-02  

10 1.0509E+02 - 3.4448E-02 1.1921E+02 3.2521E-02 

20000 1 2.0705E+00 1.1696E+00 2.9631E+01 - 1.0488E-01 
2 1.3929E+01 -2 .9336E-01  3.9890E+01 1.3243E-01 
3 2.8509E+01 1.5563E-01 5.4128E+01 -9 .9146E-02  
4 4.3718E+01 - 1.0450E- 01 6.9172E+01 7.7329E-02 
5 5.9151E+01 7.8424E-02 8.4502E+01 - 6.2954E-02 
6 7.4687E+01 -6 .2723E-02  9.9966E+01 5.2936E-02 
7 9.0277E+01 5.2259E-02 1.1550E+02 -4 .5600E-02  
8 1.0590E+02 - 4.4794E- 02 1.3109E+02 4.0015E-02 
9 1.2154E+02 3.9204E-02 1.4670E+02 -3 .5629E-02  

10 1.3720E+02 - 3.4860E- 02 1.6233E+02 Y2096E-02 

Table 4. Nusselt numbers for fully developed flow in a parallel plate channel as a function of the 
Reynolds and Prandtl number. The values in brackets indicate the Nusselt numbers for fully 

developed flow without axial heat conduction effects 

Pr 
ReD 0.002 0.004 0.006 0.01 0.02 

3000 8.370(8.253) 8.304(8.255) 8.284(8.258) 8.277(8.267) 8.298(8.295) 
5000 8.518(8.462) 8.486(8.468) 8.484(8.475) 8.497(8.494) 8.560(8.559) 
8000 8.686(8.662) 8.680(8.673) 8.691(8.688) 8.728(8.727) 8.859(8.859) 

10000 8.760(8.744) 8.765(8.760) 8.783(8.781) 8.835(8.834) 9.017(9.017) 
15000 8.858(8.851) 8.881(8.879) 8.917(8.916) 9.010(9.010) 9.326(9.326) 
20000 8.919(8.915) 8.957(8.956) 9.011(9.011) 9.149(9.149) 9.608(9.608) 
30000 9.012(9.010) 9.082(9.082) 9.175(9.175) 9.408(9.408) 10.164(10.164) 

the ones plot ted in Fig. 5 for pipe flow. Nevertheless,  
by compar ing  Fig. 9 with  Fig. 5 it can be noticed tha t  
the region of  influence of  axial heat  conduc t ion  is 
smaller for the parallel plate channel  than  for the pipe. 
This is due to the fact tha t  the thermal  entry length 
Zth for a parallel plate channel  scaled by D and  PeD is 
much  smaller t han  for pipe flow. Fo r  l aminar  flow and  
neglected effects of  a~Jal heat  conduc t ion  for example 
Lth/(DPeD) = 0.03346 for pipe flow and  only 0.00797 
for a parallel  plate channel  [4]. 

4. CONCLUSIONS 

According to the present  analytical  s tudy con- 
cerning the influence of  axial heat  conduc t ion  within 
the fluid, the following major  conclusions can  be 
drawn:  

(1) By using a new defined vector  no rm it is possible 
to ob ta in  a selfadjoint eigenvalue p rob lem for the 
extended tu rbu len t  Grae tz  p rob lem even though  the 
original  convective diffusion opera tor  is nonself- 
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adjoint.  Therefore,  an  entirely analyt ical  solut ion to 
the extended turbulen t  Grae tz  problem with Dirichlet  
wall bounda ry  condi t ions  could be developed. 

(2) The obta ined  analytical  results for pipe flow are 
compared  with measurements  of  Gil l i land et al. [17] 
and  Sleicher et al. [18] and  good agreement  between 
measured and  computed  Nussel t  numbers  could be 
observed. 

(3) The relative error  in Nussel t  n u m b e r  due to 
ignoring the effect of  axial heat  conduc t ion  in the fluid 
is very much  dependent  on  the k ind of  wall bounda ry  
condit ions.  For  Dir ichlet  wall boundary  condi t ions  
the relative error  reaches m ax i m um  values. 

(4) Fo r  very small  Peclet numbers  it can be observed 
tha t  the fully developed Nussel t  n u m b e r  increases with 
decreasing Peclet numbers  and  behaves  as for l aminar  
flow. 

Finally it should be no ted  tha t  the shown solut ion 
me thod  with the defined no rm by equa t ion  (18) can 
be used for a b road  class of  problems associated with 
part ial  differential equat ions  similar to equa t ion  (1). 
Related problems with addi t ional  source terms in 
equat ion  (1) can be solved in a similar way. The reader  
is referred to Weigand et al. [11] where an  example is 
given on how to incorpora te  addi t ional  source terms 
into the solut ion for the case of  l aminar  flow in a 
parallel plate channel .  
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APPENDIX 1 

In this Appendix it will be shown that the eigenfunctions 
related to equation (20) constitute a set of orthonormal func- 
tions. Consider the two eigenvectors tl[}) and ~k with the 
related eigenvalues 2j and 2k. From equation (20) one gets 

L~j = ,a.j@j L*k = 2k@k (A1) 

with the boundary conditions 

Oj:(1) = ~kl(1) = 0 ~j2(0) = ~k2(0) = 0. (A2) 

By taking the inner product of both sides of equations (A l) 
according to equation (18) the following expression is 
obtained 

(L~) ,~k)  -- (~ j ,L~k)  = (2j -- 2k)(~j,~k). CA3) 

Because the operator L is a symmetric operator in the Hilbert 
space H of interest (this means that ( ~ , L A )  = (L~ ,A) )  it 
follows from equation (A3) 

0 for 2) ~ 2k 
< ~ j , o ~ >  = 

II o j  {i z fo r  2j = 2k 
(A4) 

This of course shows that the eigenfunctions constitute a set 
of orthogonal functions for the inner product defined by 
equation (18). 
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APPENDIX 2 

In this Appendix some interesting results concerning the 
vector norm II ~j  II 2 will be discussed. The vector norm is 
defined by equation (18) as 

( e e  2 a2 (a)r -'k J 

(A5) 

with ~jl(1) = ~j2(0) = 0. Using equations (21) and (22) and 
integrating the second part of the integral by parts, the fol- 
lowing result for the vector norm can be obtained 

1;ol ~e~ ;o1 II~j [I = = - ~  ~a~j] d~+ ~a~(n3~j] da. 

(A6) 

Equation (A6) show,,; the very interesting result that the 
vector norm approaches continuously the norm for the para- 

bolic problem for al (nO/Pe 2 ~ 0 (note that 2j = -12j I for 
~ > 0 ) .  

Finally equation (37) will be derived. Consideration is 
given to the two eigenvectors Oj and • satisfying equation 
(20). 

L(I~j = ,~j{l~j L~ = 20 (A7) 

with the boundary conditions 

• jl(1) = ~j2(0) = 0 02(0,2) = 0. (A8) 

Further it will be assumed that 

lim ~(~,2) = ~j0q). (A9) 

Taking the inner product of both sides of equation (A7) 
according to equation (18) the following equation can be 
obtained 

(2--2j)(~j,~(~,2)) = ~j2(1)~1(1, 2). (A10) 

By using the rule of de l'Hospital it can be shown that 
equation (A10) is equal to equation (37). 


